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Abstract
Two-dimensional Krall–Sheffer polynomials are analogues of the classical
orthogonal polynomial. They are eigenfunctions of second-order linear partial
differential operators and moreover satisfy orthogonality conditions. We
show that all Krall–Sheffer polynomials are connected with two-dimensional
superintegrable systems on spaces with constant curvature.

PACS numbers: 02.30.Gp, 02.20.-a, 02.30.Ik, 02.30.Jr

Assume that Pn(x, y) are polynomials in two variables x, y. As usual, the degree n is the
maximal value n = max{i + j} among all possible monomials xiyj in the expansion of the
polynomial Pn(x).

Krall and Sheffer considered [5] the problem of finding all polynomials Pn(x, y) with the
following properties:

(i) The polynomials Pn(x, y) are eigenfunctions of a second-order admissible differential
operator L (to be fully defined later)

LPn(x, y) = λnPn(x, y) (1)

with polynomial coefficients:

L = A(x, y)∂xx + 2B(x, y)∂xy + C(x, y)∂yy + D(x, y)∂x + E(x, y)∂y (2)

where A(x, y), . . . , E(x, y) are polynomials in x and y with real coefficients. Note that
the eigenvalue λn depends only on the degree of the polynomial Pn(x, y).
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(ii) There exists a nondegenerate linear functional σ defined on the space of all polynomials
in two variables such that the orthogonality property

〈σ, Pn(x, y)q(x, y)〉 = 0 (3)

holds with q(x, y) any polynomial of degree <n. The functional σ can be defined through
its moments 〈σ, xnym〉 = cnm, where n,m = 0, 1, 2, . . .. By describing a functional as
‘nondegenerate’ one means that it has the property that if one has ψ(x, y)σ = 0 for some
polynomial ψ(x, y), then ψ(x, y) ≡ 0.

The orthogonality property (3) is closely connected with the symmetrizability of the
operator L. Recall that the Lagrange adjoint of the operator L in equation (2) is defined
as [6]

L+ = ∂xxA(x, y) + 2∂xyB(x, y) + ∂yyC(x, y) − ∂xD(x, y) − ∂yE(x, y). (4)

The operator L is symmetric if L+ = L. The operator L is symmetrizable if there exists
a real function ρ(x, y) such that the operator ρ(x, y)L is symmetric. As shown in [2], the
properties (i), (ii) (given that the functional σ is nondegenerate) imply the symmetrizability of
the operator L.

Later on, Engelis [2] independently considered the same problem from a slightly different
point of view and found the same classification scheme. In what follows we will use the
Engelis scheme which is more convenient for our purposes.

Before presenting the classification scheme given in [2], we recall some facts concerning
admissible differential operators L [3, 4, 7].

The differential operator L in equation (2) is called admissible if for any positive integer
n there exists n + 1 linearly independent polynomial eigenvalue solutions of degree n:

LQ(i)
n (x, y) = λnQ

(i)
n i = 0, 1, . . . , n (5)

and there are no polynomial solutions having degree less than n for the same value λn.
It can be easily shown that the operator L is admissible if and only if the coefficients

A(x, y), . . . , E(x, y) are of the form [7]

A(x, y) = αx2 + a10x + a01y + a00

B(x, y) = αxy + b10x + b01y + b00
(6)

C(x, y) = αy2 + c10x + c01y + c00

D(x, y) = βx + d0 E(x, y) = βy + e0
(7)

where α, β, aik, bik, cik, d0, e0 (i, k = 0, 1) are arbitrary real parameters with the only
restriction αp + β �= 0 for p = 0, 1, 2, . . .. The eigenvalues are then

λn = n(α(n − 1) + β). (8)

Note that for admissible polynomials, eigenvalues are nondegenerate, i.e. λn �= λm for n �= m.
There is an obvious geometrical interpretation of the admissible operators (we follow [8]).

First of all, perform a similarity transformation of the operator L with some function #(x, y):

L̃ = #−1(x, y)L#(x, y) = A(x, y)∂xx + 2B(x, y)∂xy + C(x, y)∂yy

+ D̃(x, y)∂x + Ẽ(x, y)∂y + U(x, y) (9)

where

D̃(x, y) = D(x, y) + 2
A(x, y)#x(x, y) + B(x, y)#y(x, y)

#(x, y)

Ẽ(x, y) = E(x, y) + 2
C(x, y)#y(x, y) + B(x, y)#x(x, y)

#(x, y)
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and

U(x, y) = A#xx + C#yy + 2B#xy + D#x + E#y

#(x, y)
.

The operator L̃ (9) can be presented in a form close to that of the Laplace–Beltrami
operator associated with a metric gik(x, y). Indeed, assume that a two-dimensional metric
tensor gik(x, y) is given. This means that for the length element ds we have ds2 =
g11(x, y) dx2 + g22(x, y) dy2 + 2g12(x, y) dx dy. Then, the Laplace–Beltrami operator 'LB is
defined as [1]

'LB = f (x, y)1/2∂ig
ik(x, y)f (x, y)−1/2∂k (10)

where ∂1 = ∂x , ∂2 = ∂y and f (x, y) = det ‖gik(x, y)‖ = det ‖gik(x, y)‖−1. From (10) we
have

'LB = g11∂xx + g22∂yy + 2g12∂xy + S1(x, y)∂x + S2(x, y)∂y (11)

where

S1(x, y) = ∂g11

∂x
+

∂g21

∂y
− 1

2
f −1(x, y)

(
g11 ∂f (x, y)

∂x
+ g12 ∂f (x, y)

∂y

)

and

S2(x, y) = ∂g12

∂x
+

∂g22

∂y
− 1

2
f −1(x, y)

(
g12 ∂f (x, y)

∂x
+ g22 ∂f (x, y)

∂y

)
.

Let us compare expression (9) for the operator L̃ with expression (11). It is natural to
make the following identifications:

g11 = A(x, y) g12 = B(x, y) g22 = C(x, y). (12)

Then f (x, y) = A(x, y)C(x, y) − B2(x, y) and we have

L̃ = 'LB + T1(x, y)∂x + T2(x, y)∂y + U(x, y) (13)

where

T1(x, y) = D̃(x, y) − Ax(x, y) − By(x, y) +
Bfy(x, y) + Afx(x, y)

2f (x, y)

and

T2(x, y) = Ẽ(x, y) − Bx(x, y) − Cy(x, y) +
Bfx(x, y) + Cfy(x, y)

2f (x, y)
.

So, under the identification (12) we see from (13) that the operator L̃ coincides with the
Laplace–Beltrami operator 'LB up to terms containing only the first derivatives and the
‘potential’ U(x, y).

It is natural to ask whether a function #(x, y) exists such that the condition

T1(x, y) = T2(x, y) ≡ 0 (14)

holds.
If (14) is valid, then we have

L̃ = 'LB + U(x, y). (15)

On the other hand, it is well known [1] that the Laplace–Beltrami operator 'LB plays the role
of the free-motion Hamiltonian for a quantum mechanical particle on a Riemannian space
with the metric gik(x, y). Hence, condition (14) says that the operator L̃ coincides with the
Schrödinger operator on this Riemannian space with the potential U(x, y).
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If condition (14) cannot be satisfied then it can be interpreted as indicating the presence
of a magnetic field. Therefore, condition (14) reflects the absence of magnetic fields.

It is easily seen [8] that condition (14) is equivalent to the condition

∂y

(
CK1 − BK2

f

)
= ∂x

(
AK2 − BK1

f

)
(16)

where

K1(x, y) = 4Axf + 4Byf − Afx − Bfy − D

4f

K2(x, y) = 4Bxf + 4Cyf − Bfx − Cfy − E

4f
.

We see that any admissible operator L depends on 13 parameters. It is natural to call
the ten parameters α, aik, bik, cik internal parameters. Indeed, these parameters define the
metric tensor gik(x, y) and hence describe the geometrical properties of the operator L. The
remaining three parameters β, d0, e0 will be called external parameters. These parameters
describe the interaction of our system with external fields.

Of course, it is possible to reduce the number of independent internal parameters by means
of affine transformations of the independent arguments x, y. We will describe this procedure
following [7].

Consider all invertible affine transformations of the form

x = q11ξ + q12η + q10

y = q21ξ + q22η + q20
(17)

with some coefficients qik . Then it is easily shown [7] that if L is admissible in coordinates
x, y, then L remains admissible in the new coordinates ξ, η. Moreover, property (ii) and
the symmetrizability of the operator L are also preserved under the transformation (17).
Property (14) is also preserved under affine transformations. This means that if the operator L
is reduced to the form (15) without magnetic field then the affine-transformed operator L can
also be reduced to the same form.

The parameter α is preserved under affine transformations. Hence we can make a division
into two cases: α �= 0 and α = 0. If α �= 0 we can put α = 1 without loss of generality.
Indeed, in this case we can divide the lhs and rhs of equation (1) by α. This will lead only to
a renormalization of the remaining nine internal and three external parameters.

As affine transformation (17) contains six independent parameters, it is possible to reduce
the nine internal parameters aik, bik, cik to three independent parameters. We have thus
achieved a division of the admissible operators L into two classes: those with α �= 0 and
those with α = 0; and each class contains six independent parameters: three internal and three
external ones.

The characteristic determinant f (x, y) = det ‖gik(x, y)‖ = A(x, y)C(x, y) − B2(x, y)

plays a crucial role in the classification of all possible distinct cases of admissible operators
(for details see, e.g., [7]).

We can formulate the main result of [2] as follows.

Theorem 1. If the operator L is admissible and there exists a nondegenerate functional σ ,
then the operator L is symmetrizable. Moreover, up to affine transformation, there exist nine
distinct types of L:

(I) A(x, y) = x2−x,B(x, y) = xy,C(x, y) = y2−y,D(x, y) = βx+d0,E(x, y) = βy+e0;
the characteristic determinant is f (x, y) = xy(1 − x − y).
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(II) A(x, y) = x2, B(x, y) = xy, C(x, y) = y2 − y, D(x, y) = βx + d0, E(x, y) = βy + e0,
f (x, y) = −x2y.

(III) A(x, y) = x2, B(x, y) = xy, C(x, y) = y2 + x, D(x, y) = βx + d0, E(x, y) = βy + e0,
f (x, y) = x3.

(IV) A(x, y) = −x, B(x, y) = 0, C(x, y) = −y, D(x, y) = βx + d0, E(x, y) = βy + e0,
f (x, y) = xy.

(V) A(x, y) = 0, B(x, y) = x, C(x, y) = y, D(x, y) = βx + d0, E(x, y) = βy + e0,
f (x, y) = −x2.

(VI) A(x, y) = −x, B(x, y) = 0, C(x, y) = −1, D(x, y) = βx + d0, E(x, y) = βy + e0,
f (x, y) = x.

(VII) A(x, y) = −1, B(x, y) = 0, C(x, y) = −1, D(x, y) = βx + d0, E(x, y) = βy + e0,
f (x, y) = 1.

(VIII) A(x, y) = y, B(x, y) = 1, C(x, y) = 0, D(x, y) = βx + d0, E(x, y) = βy + e0,
f (x, y) = −1.

(IX) A(x, y) = x2 − 1, B(x, y) = xy, C(x, y) = y2 − 1, D(x, y) = βx, E(x, y) = βy,
f (x, y) = 1 − x2 − y2.

As was shown in [8], in all nine cases the Krall–Sheffer–Engelis (KSE) operators L can
be transformed into a form in which they describe integrable quantum mechanical systems on
spaces of constant curvature without magnetic field.

Direct computation yields [8]:

Proposition 1. Condition (16) holds for every case (I)–(IX) of the KSE classification scheme.
Hence every case can be transformed to a quantum system on two-dimensional manifolds with
some potential U(x, y) without magnetic field.

Our next step will be to find the mean Riemannian curvature κ(x, y) corresponding to the
metric gik(x, y). The Riemannian curvature κ(x, y) can be calculated from the components
gik(x, y) of the metric using standard formulae from differential geometry. Performing these
simple calculations we arrive at the following:

Proposition 2. The mean Riemannian curvature is constant for every case (I)–(IX) of the KSE
classification scheme. More precisely, the cases (IV)–(VIII) correspond to zero curvature,
whereas the cases (I)–(III) and (IX) correspond to a nonzero curvature.

For details and examples of corresponding quantum systems see [8].
Thus all nine types correspond to some quantum mechanical systems describing the motion

of a particle in the presence of some potentials on two-dimensional spaces of constant curvature.
There are no magnetic fields in any of these cases.

We now present the main result of this paper. That is, we show that all nine types
in the KSE classification correspond to superintegrable systems. This means that there
exist two algebraically independent operators I1 and I2 commuting with the operator L:
[L, I1] = [L, I2] = 0. Operators I1,2 act on the space of polynomials of two variables
and preserve the degree of a polynomial.

Theorem 2. For all nine types in the KSE classification scheme the algebraically independent
integrals I1, I2 commuting with the operator L are

Case (I).

I1 = x(1 − x − y)∂xx + (d0(y − 1) − (β + e0)x)∂x

I2 = y(1 − x − y)∂yy + (e0(x − 1) − (β + d0)y)∂y.
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Case (II).

I1 = x2∂xx + ((β + e0)x + d0(1 − y))∂x

I2 = xy∂yy + (d0y − e0x)∂y.

Case (III).

I1 = x2∂yy + (e0x − d0y)∂y

I2 = 2x2∂xy + xy∂yy + (e0x − d0y)∂x + (βx + d0)∂y.

Case (IV).

I1 = −x∂xx + (βx + d0)∂x

I2 = −xy(∂x − ∂y)
2 + (d0y − e0x)∂x + (e0x − d0y)∂y.

Case (V).

I1 = x2∂xx + (e0x − d0y)∂x

I2 = x∂yy + (βx + d0)∂y.

Case (VI).

I1 = −x∂xx + (βx + d0)∂x

I2 = ∂yy − (e0 + βy)∂y.

Case (VII).

I1 = −∂xx + (βx + d0)∂x

I2 = (d0 + βx)∂y − (βy + e0)∂x.

Case (VIII).

I1 = ∂xx + (βy + e0)∂x

I2 = (x − y2)∂xx − 2y∂xy − ∂yy + (e0x − d0y)∂x − (βx + d0)∂y.

Case (IX).

I1 = x∂y − y∂x

I2 = (1 − x2 − y2)∂xy + (1 − β)x∂y.

Note that in cases (VII) and (IX) there exist integrals of first order. In all other cases we
have integrals of second order with respect to the derivatives.

Thus all types (I)–(IX) correspond to superintegrable systems. Recall that a two-
dimensional system is called integrable if there exists at least one integral commuting with the
Hamiltonian. Superintegrable systems (with two algebraically independent integrals) form a
subclass of integrable systems.

Our next main result is a characterization of the existence of a nondegenerate orthogonality
functional in terms of integrability.

Theorem 3. The existence of a nondegenerate orthogonality functional for an admissible
operator L is equivalent to the existence of a second-order integral I commuting with L:
[L, I ] = 0.
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The proof of this statement is based on a direct computation of second-order integrals
for admissible operators. It appears that the existence of such integrals imposes additional
restrictions on the values of intrinsic parameters. We saw that affine transformations allow
one to reduce the number of intrinsic parameters to three. Direct calculations show that the
existence of commuting integrals reduces this number to zero. That is, there are three additional
conditions fixing these three parameters. This leads (up to affine transformations) to the same
coefficients A(x, y), B(x, y), C(x, y) as in the KSE classification scheme. Details of the proof
will be published separately.

The meaning of this theorem is that all nine cases in the KSE scheme can be equally
characterized by the existence of at least one second-order integral. Note that superintegrability
(i.e. the existence of the second independent integral) is obtained as a by-product during the
proof of this theorem.
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